'Weak Dependency Graph [60.0]' ------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { a__f(X) -> g(h(f(X))) , mark(f(X)) -> a__f(mark(X)) , mark(g(X)) -> g(X) , mark(h(X)) -> h(mark(X)) , a__f(X) -> f(X)} Details: We have computed the following set of weak (innermost) dependency pairs: { a__f^#(X) -> c_0() , mark^#(f(X)) -> c_1(a__f^#(mark(X))) , mark^#(g(X)) -> c_2() , mark^#(h(X)) -> c_3(mark^#(X)) , a__f^#(X) -> c_4()} The usable rules are: { mark(f(X)) -> a__f(mark(X)) , mark(g(X)) -> g(X) , mark(h(X)) -> h(mark(X)) , a__f(X) -> g(h(f(X))) , a__f(X) -> f(X)} The estimated dependency graph contains the following edges: {mark^#(f(X)) -> c_1(a__f^#(mark(X)))} ==> {a__f^#(X) -> c_4()} {mark^#(f(X)) -> c_1(a__f^#(mark(X)))} ==> {a__f^#(X) -> c_0()} {mark^#(h(X)) -> c_3(mark^#(X))} ==> {mark^#(h(X)) -> c_3(mark^#(X))} {mark^#(h(X)) -> c_3(mark^#(X))} ==> {mark^#(g(X)) -> c_2()} {mark^#(h(X)) -> c_3(mark^#(X))} ==> {mark^#(f(X)) -> c_1(a__f^#(mark(X)))} We consider the following path(s): 1) { mark^#(h(X)) -> c_3(mark^#(X)) , mark^#(f(X)) -> c_1(a__f^#(mark(X))) , a__f^#(X) -> c_4()} The usable rules for this path are the following: { mark(f(X)) -> a__f(mark(X)) , mark(g(X)) -> g(X) , mark(h(X)) -> h(mark(X)) , a__f(X) -> g(h(f(X))) , a__f(X) -> f(X)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { mark(f(X)) -> a__f(mark(X)) , mark(g(X)) -> g(X) , mark(h(X)) -> h(mark(X)) , a__f(X) -> g(h(f(X))) , a__f(X) -> f(X) , mark^#(f(X)) -> c_1(a__f^#(mark(X))) , mark^#(h(X)) -> c_3(mark^#(X)) , a__f^#(X) -> c_4()} Details: We apply the weight gap principle, strictly orienting the rules {mark(g(X)) -> g(X)} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark(g(X)) -> g(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] a__f^#(x1) = [1] x1 + [0] c_0() = [0] mark^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [3] c_2() = [0] c_3(x1) = [1] x1 + [1] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__f^#(X) -> c_4()} and weakly orienting the rules {mark(g(X)) -> g(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__f^#(X) -> c_4()} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] g(x1) = [1] x1 + [1] h(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] a__f^#(x1) = [1] x1 + [2] c_0() = [0] mark^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [0] c_2() = [0] c_3(x1) = [1] x1 + [7] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(f(X)) -> c_1(a__f^#(mark(X)))} and weakly orienting the rules { a__f^#(X) -> c_4() , mark(g(X)) -> g(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(f(X)) -> c_1(a__f^#(mark(X)))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] g(x1) = [1] x1 + [1] h(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] a__f^#(x1) = [1] x1 + [2] c_0() = [0] mark^#(x1) = [1] x1 + [5] c_1(x1) = [1] x1 + [0] c_2() = [0] c_3(x1) = [1] x1 + [4] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { a__f(X) -> g(h(f(X))) , a__f(X) -> f(X) , mark^#(h(X)) -> c_3(mark^#(X))} and weakly orienting the rules { mark^#(f(X)) -> c_1(a__f^#(mark(X))) , a__f^#(X) -> c_4() , mark(g(X)) -> g(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a__f(X) -> g(h(f(X))) , a__f(X) -> f(X) , mark^#(h(X)) -> c_3(mark^#(X))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [7] g(x1) = [1] x1 + [0] h(x1) = [1] x1 + [6] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] a__f^#(x1) = [1] x1 + [3] c_0() = [0] mark^#(x1) = [1] x1 + [4] c_1(x1) = [1] x1 + [0] c_2() = [0] c_3(x1) = [1] x1 + [0] c_4() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(f(X)) -> a__f(mark(X)) , mark(h(X)) -> h(mark(X))} Weak Rules: { a__f(X) -> g(h(f(X))) , a__f(X) -> f(X) , mark^#(h(X)) -> c_3(mark^#(X)) , mark^#(f(X)) -> c_1(a__f^#(mark(X))) , a__f^#(X) -> c_4() , mark(g(X)) -> g(X)} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(f(X)) -> a__f(mark(X)) , mark(h(X)) -> h(mark(X))} Weak Rules: { a__f(X) -> g(h(f(X))) , a__f(X) -> f(X) , mark^#(h(X)) -> c_3(mark^#(X)) , mark^#(f(X)) -> c_1(a__f^#(mark(X))) , a__f^#(X) -> c_4() , mark(g(X)) -> g(X)} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { a__f_1(11) -> 10 , a__f_1(11) -> 11 , g_0(2) -> 2 , g_0(2) -> 10 , g_0(3) -> 2 , g_0(3) -> 10 , g_0(4) -> 2 , g_0(4) -> 10 , g_1(2) -> 11 , g_1(3) -> 11 , g_1(4) -> 11 , g_1(12) -> 10 , g_1(12) -> 11 , h_0(2) -> 3 , h_0(3) -> 3 , h_0(4) -> 3 , h_1(11) -> 10 , h_1(11) -> 11 , h_1(13) -> 12 , f_0(2) -> 4 , f_0(3) -> 4 , f_0(4) -> 4 , f_1(11) -> 10 , f_1(11) -> 11 , f_1(11) -> 13 , mark_0(2) -> 10 , mark_0(3) -> 10 , mark_0(4) -> 10 , mark_1(2) -> 11 , mark_1(3) -> 11 , mark_1(4) -> 11 , a__f^#_0(2) -> 6 , a__f^#_0(3) -> 6 , a__f^#_0(4) -> 6 , a__f^#_0(10) -> 9 , a__f^#_1(11) -> 14 , mark^#_0(2) -> 8 , mark^#_0(3) -> 8 , mark^#_0(4) -> 8 , c_1_0(9) -> 8 , c_1_1(14) -> 8 , c_3_0(8) -> 8 , c_4_0() -> 6 , c_4_0() -> 9 , c_4_1() -> 14} 2) { mark^#(h(X)) -> c_3(mark^#(X)) , mark^#(f(X)) -> c_1(a__f^#(mark(X))) , a__f^#(X) -> c_0()} The usable rules for this path are the following: { mark(f(X)) -> a__f(mark(X)) , mark(g(X)) -> g(X) , mark(h(X)) -> h(mark(X)) , a__f(X) -> g(h(f(X))) , a__f(X) -> f(X)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { mark(f(X)) -> a__f(mark(X)) , mark(g(X)) -> g(X) , mark(h(X)) -> h(mark(X)) , a__f(X) -> g(h(f(X))) , a__f(X) -> f(X) , mark^#(f(X)) -> c_1(a__f^#(mark(X))) , mark^#(h(X)) -> c_3(mark^#(X)) , a__f^#(X) -> c_0()} Details: We apply the weight gap principle, strictly orienting the rules {mark(g(X)) -> g(X)} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark(g(X)) -> g(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] a__f^#(x1) = [1] x1 + [0] c_0() = [0] mark^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [3] c_2() = [0] c_3(x1) = [1] x1 + [1] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__f^#(X) -> c_0()} and weakly orienting the rules {mark(g(X)) -> g(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__f^#(X) -> c_0()} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] g(x1) = [1] x1 + [1] h(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] a__f^#(x1) = [1] x1 + [2] c_0() = [0] mark^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [0] c_2() = [0] c_3(x1) = [1] x1 + [7] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(f(X)) -> c_1(a__f^#(mark(X)))} and weakly orienting the rules { a__f^#(X) -> c_0() , mark(g(X)) -> g(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(f(X)) -> c_1(a__f^#(mark(X)))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] g(x1) = [1] x1 + [1] h(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] a__f^#(x1) = [1] x1 + [2] c_0() = [0] mark^#(x1) = [1] x1 + [5] c_1(x1) = [1] x1 + [0] c_2() = [0] c_3(x1) = [1] x1 + [4] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { a__f(X) -> g(h(f(X))) , a__f(X) -> f(X) , mark^#(h(X)) -> c_3(mark^#(X))} and weakly orienting the rules { mark^#(f(X)) -> c_1(a__f^#(mark(X))) , a__f^#(X) -> c_0() , mark(g(X)) -> g(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a__f(X) -> g(h(f(X))) , a__f(X) -> f(X) , mark^#(h(X)) -> c_3(mark^#(X))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [7] g(x1) = [1] x1 + [0] h(x1) = [1] x1 + [6] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] a__f^#(x1) = [1] x1 + [3] c_0() = [0] mark^#(x1) = [1] x1 + [4] c_1(x1) = [1] x1 + [0] c_2() = [0] c_3(x1) = [1] x1 + [0] c_4() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(f(X)) -> a__f(mark(X)) , mark(h(X)) -> h(mark(X))} Weak Rules: { a__f(X) -> g(h(f(X))) , a__f(X) -> f(X) , mark^#(h(X)) -> c_3(mark^#(X)) , mark^#(f(X)) -> c_1(a__f^#(mark(X))) , a__f^#(X) -> c_0() , mark(g(X)) -> g(X)} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(f(X)) -> a__f(mark(X)) , mark(h(X)) -> h(mark(X))} Weak Rules: { a__f(X) -> g(h(f(X))) , a__f(X) -> f(X) , mark^#(h(X)) -> c_3(mark^#(X)) , mark^#(f(X)) -> c_1(a__f^#(mark(X))) , a__f^#(X) -> c_0() , mark(g(X)) -> g(X)} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { a__f_1(11) -> 10 , a__f_1(11) -> 11 , g_0(2) -> 2 , g_0(2) -> 10 , g_0(3) -> 2 , g_0(3) -> 10 , g_0(4) -> 2 , g_0(4) -> 10 , g_1(2) -> 11 , g_1(3) -> 11 , g_1(4) -> 11 , g_1(12) -> 10 , g_1(12) -> 11 , h_0(2) -> 3 , h_0(3) -> 3 , h_0(4) -> 3 , h_1(11) -> 10 , h_1(11) -> 11 , h_1(13) -> 12 , f_0(2) -> 4 , f_0(3) -> 4 , f_0(4) -> 4 , f_1(11) -> 10 , f_1(11) -> 11 , f_1(11) -> 13 , mark_0(2) -> 10 , mark_0(3) -> 10 , mark_0(4) -> 10 , mark_1(2) -> 11 , mark_1(3) -> 11 , mark_1(4) -> 11 , a__f^#_0(2) -> 6 , a__f^#_0(3) -> 6 , a__f^#_0(4) -> 6 , a__f^#_0(10) -> 9 , a__f^#_1(11) -> 14 , c_0_0() -> 6 , c_0_0() -> 9 , c_0_1() -> 14 , mark^#_0(2) -> 8 , mark^#_0(3) -> 8 , mark^#_0(4) -> 8 , c_1_0(9) -> 8 , c_1_1(14) -> 8 , c_3_0(8) -> 8} 3) { mark^#(h(X)) -> c_3(mark^#(X)) , mark^#(f(X)) -> c_1(a__f^#(mark(X)))} The usable rules for this path are the following: { mark(f(X)) -> a__f(mark(X)) , mark(g(X)) -> g(X) , mark(h(X)) -> h(mark(X)) , a__f(X) -> g(h(f(X))) , a__f(X) -> f(X)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { mark(f(X)) -> a__f(mark(X)) , mark(g(X)) -> g(X) , mark(h(X)) -> h(mark(X)) , a__f(X) -> g(h(f(X))) , a__f(X) -> f(X) , mark^#(h(X)) -> c_3(mark^#(X)) , mark^#(f(X)) -> c_1(a__f^#(mark(X)))} Details: We apply the weight gap principle, strictly orienting the rules {mark(g(X)) -> g(X)} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark(g(X)) -> g(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] a__f^#(x1) = [1] x1 + [7] c_0() = [0] mark^#(x1) = [1] x1 + [5] c_1(x1) = [1] x1 + [1] c_2() = [0] c_3(x1) = [1] x1 + [0] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(f(X)) -> c_1(a__f^#(mark(X)))} and weakly orienting the rules {mark(g(X)) -> g(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(f(X)) -> c_1(a__f^#(mark(X)))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] g(x1) = [1] x1 + [2] h(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] a__f^#(x1) = [1] x1 + [0] c_0() = [0] mark^#(x1) = [1] x1 + [4] c_1(x1) = [1] x1 + [0] c_2() = [0] c_3(x1) = [1] x1 + [2] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(h(X)) -> c_3(mark^#(X))} and weakly orienting the rules { mark^#(f(X)) -> c_1(a__f^#(mark(X))) , mark(g(X)) -> g(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(h(X)) -> c_3(mark^#(X))} Details: Interpretation Functions: a__f(x1) = [1] x1 + [0] g(x1) = [1] x1 + [1] h(x1) = [1] x1 + [8] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] a__f^#(x1) = [1] x1 + [0] c_0() = [0] mark^#(x1) = [1] x1 + [8] c_1(x1) = [1] x1 + [1] c_2() = [0] c_3(x1) = [1] x1 + [1] c_4() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { a__f(X) -> g(h(f(X))) , a__f(X) -> f(X)} and weakly orienting the rules { mark^#(h(X)) -> c_3(mark^#(X)) , mark^#(f(X)) -> c_1(a__f^#(mark(X))) , mark(g(X)) -> g(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a__f(X) -> g(h(f(X))) , a__f(X) -> f(X)} Details: Interpretation Functions: a__f(x1) = [1] x1 + [8] g(x1) = [1] x1 + [1] h(x1) = [1] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] a__f^#(x1) = [1] x1 + [0] c_0() = [0] mark^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [0] c_2() = [0] c_3(x1) = [1] x1 + [0] c_4() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(f(X)) -> a__f(mark(X)) , mark(h(X)) -> h(mark(X))} Weak Rules: { a__f(X) -> g(h(f(X))) , a__f(X) -> f(X) , mark^#(h(X)) -> c_3(mark^#(X)) , mark^#(f(X)) -> c_1(a__f^#(mark(X))) , mark(g(X)) -> g(X)} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(f(X)) -> a__f(mark(X)) , mark(h(X)) -> h(mark(X))} Weak Rules: { a__f(X) -> g(h(f(X))) , a__f(X) -> f(X) , mark^#(h(X)) -> c_3(mark^#(X)) , mark^#(f(X)) -> c_1(a__f^#(mark(X))) , mark(g(X)) -> g(X)} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { a__f_1(11) -> 10 , a__f_1(11) -> 11 , g_0(2) -> 2 , g_0(2) -> 10 , g_0(3) -> 2 , g_0(3) -> 10 , g_0(4) -> 2 , g_0(4) -> 10 , g_1(2) -> 11 , g_1(3) -> 11 , g_1(4) -> 11 , g_1(12) -> 10 , g_1(12) -> 11 , h_0(2) -> 3 , h_0(3) -> 3 , h_0(4) -> 3 , h_1(11) -> 10 , h_1(11) -> 11 , h_1(13) -> 12 , f_0(2) -> 4 , f_0(3) -> 4 , f_0(4) -> 4 , f_1(11) -> 10 , f_1(11) -> 11 , f_1(11) -> 13 , mark_0(2) -> 10 , mark_0(3) -> 10 , mark_0(4) -> 10 , mark_1(2) -> 11 , mark_1(3) -> 11 , mark_1(4) -> 11 , a__f^#_0(2) -> 6 , a__f^#_0(3) -> 6 , a__f^#_0(4) -> 6 , a__f^#_0(10) -> 9 , a__f^#_1(11) -> 14 , mark^#_0(2) -> 8 , mark^#_0(3) -> 8 , mark^#_0(4) -> 8 , c_1_0(9) -> 8 , c_1_1(14) -> 8 , c_3_0(8) -> 8} 4) { mark^#(h(X)) -> c_3(mark^#(X)) , mark^#(g(X)) -> c_2()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: a__f(x1) = [0] x1 + [0] g(x1) = [0] x1 + [0] h(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0() = [0] mark^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2() = [0] c_3(x1) = [0] x1 + [0] c_4() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {mark^#(g(X)) -> c_2()} Weak Rules: {mark^#(h(X)) -> c_3(mark^#(X))} Details: We apply the weight gap principle, strictly orienting the rules {mark^#(g(X)) -> c_2()} and weakly orienting the rules {mark^#(h(X)) -> c_3(mark^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(g(X)) -> c_2()} Details: Interpretation Functions: a__f(x1) = [0] x1 + [0] g(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] f(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0() = [0] mark^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] c_2() = [0] c_3(x1) = [1] x1 + [0] c_4() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: { mark^#(g(X)) -> c_2() , mark^#(h(X)) -> c_3(mark^#(X))} Details: The given problem does not contain any strict rules 5) {mark^#(h(X)) -> c_3(mark^#(X))} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: a__f(x1) = [0] x1 + [0] g(x1) = [0] x1 + [0] h(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0() = [0] mark^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2() = [0] c_3(x1) = [0] x1 + [0] c_4() = [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {mark^#(h(X)) -> c_3(mark^#(X))} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {mark^#(h(X)) -> c_3(mark^#(X))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(h(X)) -> c_3(mark^#(X))} Details: Interpretation Functions: a__f(x1) = [0] x1 + [0] g(x1) = [0] x1 + [0] h(x1) = [1] x1 + [8] f(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] a__f^#(x1) = [0] x1 + [0] c_0() = [0] mark^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] c_2() = [0] c_3(x1) = [1] x1 + [3] c_4() = [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {mark^#(h(X)) -> c_3(mark^#(X))} Details: The given problem does not contain any strict rules